

Smplow who.fid
RELIABLE• DURABLE • DEPENDABLE

Piupbou Poo.e.ed

Head ofice:
Beirge2, Anma

MODEL		MEGHANIGAL SERIES									OOMMON RALL SERIES		
		SC108	SC213	SC213TAA	S217	S325	TSJ327	S433	TSJ436	ST440	SJ327TCR	SJV326	SJ436 TCR
Capacity	Max Rating	12.6 KW（17P P＠ 2800 prm）	18.6 kW （25 hnp＠ 2500 pmm	26.1 KW （ 35 hp ＠ 2500 rpm ）	17．8 kN（24 hp＠＠ 2000 pmm	$35 \mathrm{KN(477} \mathrm{bp} \mathrm{@} 2250 \mathrm{rmm}$ ）	42.6 kW （58PS ¢ 2200 pm ）	$35.7 \mathrm{~kW}(488 \mathrm{hp}$ ® 2200 rpm）	58.8 kW （80 PS＠ 2200 rpm）	$74 . \mathrm{kw} \mathrm{(100.5} \mathrm{bhp} \mathrm{@} 2200 \mathrm{pmm}$ ）	60 Ps © 2000 rmm	74 Ps © 2000 rpm	74 Ps＠ 2000 rpm
	Intemiteent Rating		$14.9 \mathrm{~kW}(20$ bhp © 2000 rpm）	$23.1 \mathrm{KW}(31 \mathrm{lbp}$ ¢ 2800 pm ）	16.4 kW （22 bhp © 1800 pmm ）	31.3 KW （42． hp ＠ 2000 rpm ）	33.5 KW （45 bip © 1880 pmm ）	33.5 KW （45 htp © 1880 rpm）	54.7 KW （7．4．5 P ¢ 2200 pm ）	66.3 kW （89 bhp＠ 2200 rpm ）	40，45，508 55 PS ® 2000 rpm	45，55865 Ps＠ 2000 rpm	65 Ps © 2000 rpm
	Constant Speed	$6 \mathrm{KW}(8 \mathrm{PSP}$ ® 1500 Pm）	11 WW （16 PS © 1500 rpm ）	17.1 KW（23 hhp © 1500 rpm）	14.9 kW （20 bhp＠ 1500 pm ）	23.4 kW （31．5 hhp ＠ 1500 rpm ）	$28.7 \mathrm{~kW}(38.5 \mathrm{hhp}$＠ 1800 rm ）	$30.9 \mathrm{kN} \mathrm{(41.5} \mathrm{hhp}$＠ 1500 rm ）		58.1 KW（79P9＠1500 Prm）	50 PS © 1500 rpm		70 Ps © 1500 rpm
Type／Configuration		Verical l 1 －line	Verical $1-$－line	Verical l - －line	Vericial l－line	Vericall	Verital l 1 －line	Vericall 1 －line	Vericial 1 －line	Vericial 1 － －ine	Veritalal 1 －line	Vericial n －line	Vericial 1 －line
Bre		100 mm	95 mm	95 mm	91.44 mm	91.44 mm	95 mm	91.44 mm	95 mm	100 mm	95 mm	93 mm	95 mm
Stroke		95 mm	91 mm	91 mm	127 mm								
No．of fylinder		1	2	2	2	3	3	4	4	4	3	3	4
Displacement		725 cc	1290 cc	1200 cc	1670 cc	2500 cc	2700 cc	3330 cc	36000 cc	4000 cc	2700 cc	2600 cc	3600 cc
Compression Ratio		17.5	$18: 1$	18.1	18.51	18.51	18.8 .1	18.51	18.3 .1	16.51	18．3：1	17：1	18.31
Cycle		4 stoke	4 stroke	4 stoke	4 stoke	4 stroke							
Rotation		Clockwise Newed foon forn）	Clockwise（Niewed from front）	Clockwise Niewed fom forn）	Clockwise Newed from font	Clockwise Niewed foom font）	Clockwise $\begin{gathered}\text { Viewed from front）}\end{gathered}$	Clockwise Newed from fornt）	Clockwise（Newed fiom fornt）	Clockwise（Vewed fom font）	Clockwise Niewed from foon）	Clockwise Niewed from forn）	Clockwise（Viewed foom fornt）
Aspiration		NA	NA	TClC	NA	NA	TC／Tolc	NA	TC／TIC	TC	Tal	Tal	TCIC
Combustion System		Direct tijection	Direct lijection	Direct tijection	Direct tijection	Direct lijection	Direct tijection	Diect tijection	Directrijection	Direct tijection	Direct tijection	Direct tijection	Direct tijection
Fuel Pump		Busch	In－Ine	In－line	In－line	In－Ine／／VE－Rotary	VE－Rotary	In－line	VE－－ofaty	VE－Rotay／／n－line	Common Rail（Bosch）	Common Rail（bosch）	Common Rail（Bosch）
Governing		Electoroic／Mechanical	Mechanical	Eleatronic	Electronic	Eleetronic							
Engine Starting System		Electrical	Electrical	Electical	Eletrical	Electical	Electical	Electical	Eeetrical	Eletrical	Eletrical	Feetrical	Elettical
Cooing Sysiem		Water											
Electical System		12 Volts	12 Volts	12 Volts	12 Volls	12 Volts	12 Vots						
Filwheel Housing			SAE 4	SAE4	SAE 10 OSAE 3	SAE 10 SAAE 3	SAE 10 SAAE 3	SAE 10 SAAE 3	SAE 10 S SAE 3	SAE 10 SAE 3	SAE 10r SAE 3	SAE1 Or SAE 3	SAE1 or SAE 3
Fipweel		Can be made to suit tpplicition	Can be made to suitapicication	Can be made to suit applicition	Can be made to suit appicicion	Can be made to suit applicition	Can be made to suit tapicicion	Can be made to suit applicition	Can be made to suit applicition	Can be made to suit applicition			
$\begin{array}{\|l\|l} \text { Mass } \\ \text { Emission } \end{array}$	Trator	Approval in Process for Trem IIA	Teem IIA	Teem IIA	Trem III	Trem IIIA	Trem IIA	－	TREM IIA	Non Emisision	Trem I C CAPBLE	Trem I C APABLE	Trem n capable
	Industrial	．	BSIII（ CEE）	BS II（ CEE）	BS II（ CEE）	Bs III（CE）	BSIII（CE）	BS II（ CEE）	BS II（ CEE）	Non Enisision	BS V V（CE）CAPABELE	BS V（ CEE）CAPABLE	bSV（ CEE）CAPABLE
	Giobal	－	TIER 4 E EU STAGE III	TIER 4 NT EU STAGE IIA	EPA Ter 4 NT for Constant Speed	EPA TIER 4 INT／EUS STAGE IIIA for Constant Speed	TER 4 IT EU STAGE IIA	EU STAGE IIA for Constant Speed	TER 4 IT EUSTTAGE IIA	Eu Stage II	TER 4F／／U S Stage IIB	TER 4F／／U Stage IIB	TER 4 F／／U Stage IIB
Weight（EBare Engine）		75 kg	$165 \mathrm{~kg}{ }^{\text {a }}$	$170 \mathrm{~kg}{ }^{\text {a }}$	$200 \mathrm{~kg}{ }^{*}$	$210 \mathrm{~kg}{ }^{\text {a }}$	$215 \mathrm{kg*}$	$230 \mathrm{~kg}{ }^{\text {a }}$	$270 \mathrm{~kg}{ }^{*}$	$279 \mathrm{kg*}$	$300 \mathrm{~kg}{ }^{*}$	$325 \mathrm{~kg}{ }^{*}$	$350 \mathrm{~kg}{ }^{\text {a }}$
Length x Width x Height （＂Bare Engine）		$450 \times 350 \times 750 \mathrm{~mm}{ }^{*}$	$512 \times 552 \times 663 \mathrm{~mm}{ }^{*}$	$495 \times 475 \times 685 \mathrm{~mm}{ }^{*}$	$489 \times 536 \times 756 \mathrm{~mm}{ }^{*}$	$585 \times 560 \times 760 \mathrm{~mm}{ }^{*}$	$575 \times 580 \times 805 \mathrm{~mm}{ }^{*}$	$665 \times 485 \times 730 \mathrm{~mm}{ }^{*}$	$696 \times 539 \times 797 \mathrm{mm*}$	$711 \times 614 \times 767 \mathrm{mm*}$	$681 \times 595 \times 881 \mathrm{mm*}$	$702 \times 625 \times 875 \mathrm{~mm}{ }^{*}$	$924 \times 5995 \times 895 \mathrm{mm*}$
（＊／without Fan，Flywheel，Flywheel Housing，Starter Motor）													

